Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
%\documentclass[t,10pt,handout, aspectratio=1610]{beamer}
\documentclass[t,10pt,aspectratio=1610]{beamer}
\graphicspath{{figs/}}
\usepackage{beamerthemesplit}
\usepackage{ifthen, wrapfig}
%\usepackage{animate}
\usepackage{array}
\usepackage{esint}
\usepackage{cancel}
\usepackage{shadowtext}
\usepackage{booktabs}
\usepackage{mathpazo}
%\usepackage{pgfplots}
\usepackage{filecontents, siunitx}
\usepackage{setspace}
\usepackage{hyperref}
\usepackage{dingbat,amsmath}
%\usepgfplotslibrary{clickable}
\usepackage{movie15}
\newboolean{slideshow}
\setboolean{slideshow}{false}
\everymath{\displaystyle}
\newcommand{\p}{\pause}
\newcommand{\vect}[1]{\mathrm{\mathbf{#1}}}
\renewcommand{\d}{~{d}}
\newcommand{\cross}{\times}
\newcommand{\uv}[1]{\mathbf{\vect{\hat{#1}}}}
\newcommand{\eqn}[1]{\begin{center}$#1$\end{center}}
\renewcommand{\dot}[1]{\frac{\d #1}{\d t}}
\newcommand{\centered}[1]{\begin{center}#1\end{center}}
\newcommand{\finger}{\hspace{1cm}{\leftpointright}}
%\renewcommand{\[}{\begin{equation}}
%\renewcommand{\]}{\end{equation}}
\newcommand{\dl}{\d\vec{\ell}}
\newcommand{\pd}{\partial}
\usetheme{Boadilla}
\usebackgroundtemplate{\includegraphics[width=\paperwidth]{../../cu}}
\definecolor{cu}{RGB}{71,71,186}
\begin{document}
\ifthenelse{\boolean{slideshow}}{\mode<presentation>}{}
\subtitle{212MP \& 5018CEM Electromagnetism}
\title{\shadowtext{ Week 10: Driven RLC Circuits (AC circuits)}}
\author[Alex Pedcenko]{ Alex Pedcenko}
\institute[CEM]{
School of Computing, Electronics and Mathematics \\
}
\date{{ ~Week 10 ~~\today}}
\normalsize
\begin{frame}[plain]
\titlepage
\end{frame}
\begin{frame}{\shadowtext{Recap: RLC Circuits}}
\vspace{2mm}\p
\begin{columns}[T]
\begin{column}{0.45\linewidth}
\vspace{-7mm}
\begin{figure}
\centering
\includegraphics[width=0.8\linewidth]{./RLC1}
\end{figure}\p
\end{column}
\begin{column}{0.5\linewidth}
\begin{itemize}\itemsep0.35em
\item[1a)] initially switch S1 is at "a", so capacitor is uncharged ($U_E=0$), but current $I(0)=I_0$ is at maximum ($U_B=\frac{1}{2}LI_0^2)$\p
\item[1b)] then switch is switched to "b" and inductor is "discharging" (start to charge capacitor), current decaying.
\end{itemize}
\end{column}
\end{columns}
\p
\begin{columns}[T]
\begin{column}{0.45\linewidth}
\vspace{-3mm}
\begin{figure}
\centering
\includegraphics[width=0.8\linewidth]{./RLC2}
\end{figure}
\end{column}\p
\begin{column}{0.5\linewidth}
\vspace{3mm}
\begin{itemize}\itemsep0.35em
\item[2a)] Initially capacitor is charged ($U_E=\frac{1}{2}\frac{Q^2}{C}$) and current is zero\p
\item[2b)] Then the switch is brought to state "b" and capacitor start to discharge producing current $I(t)$ in the circuit.
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{\shadowtext{Undriven RLC Circuits}}
\vspace{2mm}
\begin{columns}[T]
\begin{column}{0.2\linewidth}
\vspace{-7mm}
\begin{figure}
\centering
\includegraphics[width=1\linewidth]{./RLCa}
\caption{Undriven RLC }
\label{fig:undrivenRLC}
\end{figure}
\end{column}\p
\begin{column}{0.75\linewidth}
\begin{itemize}\itemsep0.35em
\item So, in RLC circuits we looked at before (including RC, RL, LC, RLC varieties) the DC battery with e.m.f. $\varepsilon$ was providing "initial conditions" only: \p e.g. initial charge $Q_o$ on the capacitor plates or initial current $I_o$ through the inductor,\p
\begin{itemize}\itemsep0.5em
\item i.e. $V_C(0)=\varepsilon=\frac{Q_0}{C}$ \p or $I(0)=I_o=\frac{\varepsilon}{R}$ \p
\item which is like providing initial displacement for a mass attached to a spring ($\Delta x(0)\rightarrow Q_o$) or initial velocity ($v(0)\rightarrow I_o$) of that mass. \p (i.e. initial potential or kinetic energy). \p
\end{itemize}
\end{itemize}
\end{column}
\end{columns}
\vspace{-2mm}
\begin{itemize}\itemsep0.35em
\item Then we "released our mass" (i.e. removed battery or closed the switch causing capacitor to discharge) and observed one of few possible transient processes: \p
\begin{itemize}\itemsep0.5em
\item exp. decay of current ($R^2\ge 4L/C$ over/critically damped RLC\&RC\&RL), free oscillations ($R=0$: LC), or decaying oscillations ($R^2<4L/C$: underdamped RLC)
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{\shadowtext{Driven RLC Circuits}}
\vspace{2mm}
\begin{columns}[T]
\begin{column}{0.3\linewidth}\vspace{-5mm}
\begin{figure}
\centering
\includegraphics[width=1.1\linewidth]{./drivenRLC}
\caption{Driven RLC }
\label{fig:drivenRLC}
\end{figure}
\p
\end{column}
\begin{column}{0.70\linewidth}
\textbf{~~~Undriven (unforced)}
\centered{$L\frac{\d I}{\d t}+IR+\frac{Q}{C}=0$}\p
\textbf{~~~Driven (forced)}
\centered{$L\frac{\d I}{\d t}+IR+\frac{Q}{C}=\overbrace{\varepsilon(t)}^{\text{external forcing}}$}\p
%Voltage source is now sinusoidal with angular frequency $\omega$ and amplitude $V_0$:
\end{column}
\end{columns}
\begin{columns}[T]
\begin{column}{0.5\linewidth}\vspace{3mm}
%\begin{itemize}\itemsep0.5em
%\item $\omega=2\pi f$ , rad/s\p
%\item Period: $T=1/f$, seconds\p
%\item $f=\omega/2\pi$, Hz \p ~~Amplitude $V_0$, Volts\p
%\end{itemize}
\end{column}
\begin{column}{0.5\linewidth}
%\vspace{-8mm}\centered{ \includegraphics[width=0.65\linewidth]{./AC_voltage}}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{\shadowtext{Driven RLC Circuits}}
\vspace{2mm}
\begin{columns}[T]
\begin{column}{0.3\linewidth}\vspace{-5mm}
\begin{figure}
\centering
\includegraphics[width=1.1\linewidth]{./drivenRLC}
\caption{Driven RLC }
\label{fig:drivenRLC}
\end{figure}
\end{column}
\begin{column}{0.70\linewidth}
\textbf{~~~Undriven (unforced)}
\centered{$L\frac{\d I}{\d t}+IR+\frac{Q}{C}=0$}
\textbf{~~~Driven (forced)}
\centered{$L\frac{\d I}{\d t}+IR+\frac{Q}{C}=\overbrace{V_0\sin(\omega t+\varphi)}^{\text{external forcing}}$}\p
Voltage source is now sinusoidal with angular frequency $\omega$ and amplitude $V_0$:
\end{column}
\end{columns}
\begin{columns}[T]
\begin{column}{0.5\linewidth}\vspace{3mm}
\begin{itemize}\itemsep0.5em
\item $\omega=2\pi f$ , rad/s;\p~~~Period: $T=1/f$, s\p
\item $f=\omega/2\pi$, Hz; \p ~~~~~Amplitude $V_0$, Volts\p
\end{itemize}
\end{column}
\begin{column}{0.5\linewidth}
\vspace{-6mm}\centered{ \includegraphics[width=0.65\linewidth]{./AC_voltage}}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{\shadowtext{Driven RLC Circuits}}
\vspace{2mm}
\begin{columns}[T]
\begin{column}{0.3\linewidth}\vspace{-5mm}
\begin{figure}
\centering
\includegraphics[width=1.1\linewidth]{./drivenRLC}
\caption{Driven RLC }
\label{fig:drivenRLC}
\end{figure}
\p
\end{column}
\begin{column}{0.70\linewidth}
\begin{itemize}\itemsep0.5em
\item When a voltage source is connected to an RLC circuit, energy is provided to compensate the energy dissipation in the resistor, and the oscillation will \textbf{no longer damp out}.\p
\item The oscillations of charge, current and potential difference are called driven or \textbf{forced oscillations}.\p
\item After the initial "transient time", an AC current will flow in the circuit as a response to the driving voltage. \p The current, written as
\centered{$I(t)=I_0\sin(\omega t -\varphi)$}\p
\item will oscillate with the same frequency as the voltage source, with an amplitude $I_0$ and phase $\varphi$ that depends on the driving frequency $\omega$.
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{\shadowtext{Simple AC Circuits: Purely Resistive (active) Load}}
\vspace{2mm}
\begin{columns}[T]
\begin{column}{0.5\linewidth}\vspace{-5mm}
\begin{figure}
\centering
\includegraphics[width=\linewidth]{./AC_R}
\caption{Purely active load}
\label{fig:AC_R}
\end{figure}
\p
\end{column}
\begin{column}{0.5\linewidth}
\begin{itemize}\itemsep0.5em
\item Voltage source provide sinusoidal e.m.f
\centered{$V(t)=V_0\sin\omega t$} \p
Kirchhoff's 2nd law:~~~~ \centered{$V(t)-I(t)R=0$ \p}
\centered{$\therefore~~~I(t)=\frac{V_0 \sin\omega t}{R}=I_0\sin\omega t$}\p
\end{itemize}
\end{column}
\end{columns}
\centered{Amplitudes:~~~~~~{$V_0$~~~~~~and~~~~~$I_0=\frac{V_0}{R}$}}
\end{frame}
\begin{frame}{\shadowtext{Phasor Diagram for Active Load}}
\vspace{2mm}
\begin{columns}[T]
\begin{column}{0.3\linewidth}
\vspace{-5mm}
~~\includegraphics[width=\linewidth]{./Active_VI}
\end{column}\p
\begin{column}{0.7\linewidth}
\begin{itemize}\itemsep0.5em
\item $I(t)$ and $V(t)$ \textbf{oscillate in phase}:
\centered{$V(t)=V_0 \sin\omega t$~~~~$I(t)=I_0\sin\omega t$}
\end{itemize}
\end{column}
\end{columns}
\p
\begin{columns}[T]
\begin{column}{0.3\linewidth}\vspace{-3mm}
\begin{center}
\includegraphics[width=1\linewidth]{./phasor_R}
\end{center}
\end{column}\p
\begin{column}{0.7\linewidth}
\vspace{-15mm}
\begin{itemize}\itemsep0.5em
\item The behavior of $I(t)$ and $V(t)$ can also be represented with a \textbf{phasor diagram}.\p
\item A phasor is a rotating vector having the following properties:\p
\begin{itemize}\itemsep0.5em
\item \textbf{length}: the length corresponds to the amplitude.\p
\item angular speed: the vector rotates counter-clockwise with an angular speed $\omega$.\p
\item projection: the projection of the vector along the vertical axis corresponds to the value of the alternating quantity at time $t$.
\end{itemize}
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{\shadowtext{RMS or "effective" value of $I(t)$ or $V(t)$}}
\vspace{2mm}
\begin{itemize}\itemsep0.5em
\item AC Voltage can do work: i.e. you connect your electric kettle to a wall-socket, it will boil water. \p
\item However \textbf{mean value} of sinusoidal current which flows in the heating element of that kettle is 0: \p
\centered{$\langle I \rangle=\frac{1}{T}\int_0^T I(t)~d t\p =\frac{1}{T}\int_0^T I_0\sin\omega t~ dt=0$}\p
\item But electric power isn't sensitive to the instantaneous direction of current:
\centered{$P=I(t)^2 R=I_0^2R\sin^2\omega t$~~~~or~~~~$P=V(t)^2/R$}\p
\item Therefore we need mean of the $I^2(t)$ or $V^2(t)$, \p i.e. "effective" value (\textbf{root mean square} values) of current or voltage:\p
\hspace{-10mm}{$\langle I^2(t) \rangle =\frac{I_0^2}{T}\int_0^T \sin^2\omega t~d t\p=\frac{I_0^2}{T}\int_0^T\frac{1-\cos 2\omega t}{2}~d t\p=\frac{I_0^2}{2T}\bigg( T+\cancelto{0}{\biggl[\frac{\sin 2\omega t}{2\omega}\biggr]_0^T} \bigg)\p = \frac{I_0^2}{2}$}\p
\includegraphics[width=0.2\linewidth]{cos2x} \hspace{2cm} \p {\fbox{$I_{RMS}=\sqrt{\langle I\rangle}=I_0/\sqrt{2}$}~~~~~~$V_{RMS}=V_0/\sqrt{2}$}
\end{itemize}
\end{frame}
\begin{frame}{\shadowtext{Purely Inductive (Reactive) Load}}
\vspace{2mm}
\begin{columns}[T]
\begin{column}{0.3\linewidth}\vspace{-5mm}
\begin{figure}
\centering
\includegraphics[width=\linewidth]{./AC_L}
\caption{Purely Inductive load}
\label{fig:AC_R}
\end{figure}
\p
\end{column}
\begin{column}{0.7\linewidth}
\begin{itemize}\itemsep0.5em
\item Kirchhoff's rule now reads~~~$V(t)-V_L(t)=0$\p
\centered{$V(t)-\p {L\frac{\d I}{\d t}}=0$}\p
\item To find current through the inductor we make $\frac{\d I(t)}{\d t}$ the subject:
\end{itemize}
\end{column}
\end{columns}
\begin{itemize}\itemsep0.5em
\item $\frac{\d I(t)}{\d t}=\frac{V(t)}{L}\p = \frac{V_{0L}}{L}\sin\omega t $\p ~~~~where ~~~$V_{0L}=V_0$\p
\item $I(t)=\int \d I \p = \frac{V_0}{L}\int\sin\omega t \d t \p = -\frac{V_0}{\omega L}\cos\omega t \p = \frac{V_0}{\omega L}\sin(\omega t-\varphi)$; \p~~ $\varphi=\frac{\pi}{2}$\p
\item We see that the amplitude value of the current through the inductor is
\centered{$I_0\Rightarrow \frac{V_0}{\omega L} \p = \frac{V_0}{X_L}$ \p ~~~where~~~\fbox{$X_L=\omega L$} ~~~~ is \textbf{inductive reactance}, Ohms, [$\Omega$]}
\end{itemize}
\end{frame}
\begin{frame}{\shadowtext{Phasor Diagram for purely inductive load}}
\vspace{-3mm}
\begin{columns}[T]
\begin{column}{0.5\linewidth}
\begin{figure}
\centering
\includegraphics[width=0.7\linewidth]{./Reactive_VI_plot}
\caption{$I(t)$ and $V(t)$ for inductive load}
\label{fig:Reactive_VI_plot}
\end{figure}
\end{column}
\begin{column}{0.5\linewidth}
\vspace{-3mm}
\begin{figure}
\centering
\includegraphics[width=0.6\linewidth]{./phasor_L}
\caption{Phasor diagram}
\label{fig:phasor_L}
\end{figure}
\end{column}
\end{columns}
\begin{itemize}\itemsep0.5em
\item The current $I(t)$ is out of phase with $V(t)$ by $\varphi=\pi/2$ \p
\item it reaches its maximum value after $V(t)$ does, delayed by one quarter of a cycle.\p
\item \fbox{\textbf{The current LAGS the voltage by $\pi/2$ in a purely inductive circuit}}
\end{itemize}
\end{frame}
\begin{frame}{\shadowtext{Purely Capacitive Load}}
\vspace{2mm}
\begin{columns}[T]
\begin{column}{0.3\linewidth}\vspace{-5mm}
\begin{figure}
\centering
\includegraphics[width=\linewidth]{./AC_C}
\caption{Purely Capacitive load}
\label{fig:AC_C}
\end{figure}
\p
\end{column}
\begin{column}{0.7\linewidth}
\begin{itemize}\itemsep0.5em
\item Kirchhoff's rule now reads~~~$V(t)-V_C(t)=0$\p
\centered{$V(t)-\frac{Q}{C}=0$}\p
\item To find current we make $Q$ the subject and differentiate: \p \centered{$Q=V(t)C \p = CV_0\sin\omega t ~~~\p~~~ V_{C0}=V_0$}\p
\item current is then \p
\end{itemize}
\end{column}
\end{columns}
\vspace{-1mm}
\begin{itemize}\itemsep0.5em
\item $I(t)=\frac{\d Q}{\d t} \p =\omega C V_0\cos\omega t \p = \omega C V_0\sin(\omega t + \frac{\pi}{2})$ \p
\item Amplitude of the current is ~~~~~ $I_0=\omega C V_{c0} \p = \frac{V_{CO}}{X_C}$~~~ \p where ~~\fbox{~$X_C=\frac{1}{\omega C}$}
is \textbf{capacitance reactance}. \p
\item Angle between $V(t)$ and $I(T)$ is then $\varphi=-\pi/2$
\end{itemize}
\end{frame}
\begin{frame}{\shadowtext{Phasor Diagram for purely capacitive load}}
\vspace{-3mm}
\begin{figure}
\centering
\includegraphics[width=0.7\linewidth]{./phasor_C}
\caption{$I(t)$ and $V(t)$ for capacitive load}
\label{fig:Reactive_VI_plot}
\end{figure}
\begin{itemize}\itemsep0.5em
\item Notice that at $t=0$, the voltage across the capacitor is zero while the current in the circuit is at a maximum (beginning of charging). \p
\item In fact, $I(t)$ reaches its maximum before $V_C(t)$ by one quarter of a cycle. Thus, we say that \p
\item \fbox{\textbf{The current LEAD the voltage by $\pi/2$ in a purely capacitive circuit}}
\end{itemize}
\end{frame}
\begin{frame}{\shadowtext{The RLC Series Circuit}}
\vspace{2mm}
\begin{columns}[T]
\begin{column}{0.3\linewidth}\vspace{-5mm}
\begin{figure}
\centering
\includegraphics[width=\linewidth]{./drivenRLC}
\caption{RLC Circuit}
\label{fig:AC_RLC}
\end{figure}
\p
\end{column}
\begin{column}{0.7\linewidth}
\begin{itemize}\itemsep0.5em
\item Kirchhoff's rule now reads~~~$V(t)-V_R(t)-V_L(t)-V_C(t)=0$\p
\centered{$V(t)-IR-L\frac{\d I}{\d t}-\frac{Q}{C}=0$}\p
\item or: ~~~~~~~~~~~{$L\frac{\d I}{\d t}+IR+\frac{Q}{C}=V_0\sin\omega t$}\p
\item or in terms of charge $Q$:
\centered{$L\frac{\d^2 Q}{\d t^2}+R\frac{\d Q}{\d t}+\frac{Q}{C}=V_0\sin\omega t$}\p
\end{itemize}
\end{column}
\end{columns}
\begin{itemize}\itemsep0.5em
\item Solution to the above inhomogeneous equation is
$Q(t)=Q_0\cos(\omega t-\varphi)$
\item Amplitude can be found to be $Q_0=\frac{V_0}{\omega \sqrt{R^2+(X_L-X_C)^2)}}$ \p
\item and phase angle ~~~~~~~ $\varphi=\tan^{-1}\left(\frac{X_L-X_C}{R}\right)$
\end{itemize}
\end{frame}
\begin{frame}{\shadowtext{The RLC Series Circuit}}
\vspace{0mm}
\begin{columns}[T]
\begin{column}{0.3\linewidth}\vspace{-5mm}
\begin{figure}
\centering
\includegraphics[width=\linewidth]{./drivenRLC}
\caption{RLC Circuit}
\label{fig:AC_RLC}
\end{figure}
\p
\end{column}
\begin{column}{0.7\linewidth}
\begin{itemize}\itemsep0em
\item Current is ~~~$I(t)=\frac{\d Q}{\d t}=I_0\sin(\omega t-\varphi)$ \p
\item Where ~~~$I_0=-Q_0\omega \p =-\frac{V_0}{\sqrt{R^2+(X_L-X_C)^2}}$ \p
\item The current has the same amplitude and phase at all points in the series RLC circuit.\p
\item But the instantaneous voltage across each of $R$, $L$ and $C$ has a different amplitude and phase relationship with the current!\p
\end{itemize}
\end{column}
\end{columns}
\begin{itemize}\itemsep0em
\item Ohm's law still hold: \centered{\vspace{-5mm}$I(t)=\frac{V(t)}{\sqrt{R^2+(X_L-X_C)^2}}\p =\frac{V(t)}{|Z|}$}\p
\item where \fbox{$|Z|=\sqrt{R^2+(X_L-X_C)^2}$} is called \textbf{impedance}, Ohms, of an AC circuit.\p
\item Reciprocal of impedance $Z$ is \textbf{complex admittance}: \fbox{$Y=\frac{1}{Z}$}.
\end{itemize}
\end{frame}
\begin{frame}{\shadowtext{Complex Impedance}}
\vspace{2mm}
\begin{itemize}\itemsep0.5em
\item For a "purely ohmic" resistor, $Z = R$. Due to the phase effects, the contributions of $X_C$ and $X_L$ differ in phase from resistive components by $\pi/2$ radians, a process like vector addition (phasors) is used to develop expressions for impedance. More general is the \textbf{complex impedance} method.\p
%\item The handling of the impedance of an AC circuit with multiple components quickly becomes unmanageable if sines and cosines are used to represent the voltages and currents.
\item A mathematical method which eases the difficulty is the \textbf{use of complex exponential functions}. The basic parts of the strategy are as follows\p
\centered{$e^{j\omega t}=\cos\omega t+j\sin\omega t$}
\item $V=V_0~e^{j\omega t}$ ~~~~~$I=I_0 ~e^{j\omega t-\varphi}$ \p
\item The impedance then can be expressed as complex exponential
\centered{$Z=\frac{V_0}{I_0}~e^{-j\varphi}\p = R+jX = R+j(X_L-X_C)$}\p
\item The impedance of individual elements can be expressed as pure real ($R$) or imaginary numbers: \p $R$~~~$X_L=j\omega L$~~~~~$X_C=-\frac{j}{\omega C}$
\end{itemize}
\end{frame}
\begin{frame}{\shadowtext{Impedance diagrams}}
\vspace{2mm}
\begin{columns}[T]
\begin{column}{0.5\linewidth}
\begin{center}
\includegraphics[width=1\linewidth]{./impedance_diag1}
\end{center}
\end{column}
\begin{column}{0.5\linewidth}
\begin{center}
\includegraphics[width=1\linewidth]{./impedance_diag}\\
Impedance diagram is basically the "Argand diagram" for impedances.
\end{center}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{\shadowtext{Resonance}}
\vspace{2mm}
\begin{columns}[T]
\begin{column}{0.6\linewidth}
\begin{itemize}\itemsep0.5em
\item \textbf{Resonance} happen when $\omega$ of the source is the same as natural (resonant) frequency of the correspondent $LC$ circuit:\p
\item~~~~ $\omega=\omega_0=\sqrt{\frac{1}{LC}}$.\p
\item In this case $|X_L|=|X_C|$ and both reactive voltages compensate each other exactly, so that effective remaining load is purely active ($R$). \p That lead to dramatic drop in impedance, which becomes
$$Z=\sqrt{R^2+\cancelto{0}{(X_l-X_C)^2}}=R$$ \p
\end{itemize}
\end{column}
\p
\begin{column}{0.35\linewidth}
\vspace{-8mm}
\begin{center}
\includegraphics[width=0.8\linewidth]{./RESONANCE}
Dependence of the current amplitude in RLC circuit on frequency of the source: $\omega=\omega_0$ is resonant frequency.
\end{center}
\end{column}
\end{columns}
\vspace{2mm}
\begin{itemize}
\item {In other words, at a \underline{resonance}, \textbf{imaginary parts of both complex impedance and admittance are zero}: $Im(Z)=Im(Y)=0$}
\end{itemize}
\end{frame}
\begin{frame}{\shadowtext{Tutorial/Homework questions}}
\vspace{2mm}
\begin{enumerate}\itemsep0.5em
\item I have to drive a solenoid with AC voltage from wall socket, say $V_{RMS}=220~V$, 50 Hz. Its active resistance is $R=2$ Ohms and inductance is $L=10~mH$. What maximum RMS current value I can get through it?
\p
\item I need to optimise my circuit from above question. What must I do to maximize the current through the solenoid? Provide quantitative answer. Draw impedance diagram.
\p
\item If I only have a capacitor for 1 mF, how must I adjust frequency of my power supply to maximize the current through the solenoid?
\p
\item Solve Homework questions from Aula.
\end{enumerate}
\end{frame}
\end{document}